skip to main content


Search for: All records

Creators/Authors contains: "Ding, Lei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Objective. Spontaneous fluctuations of cerebral hemodynamics measured by functional magnetic resonance imaging (fMRI) are widely used to study the network organization of the brain. The temporal correlations among the ultra-slow, <0.1 Hz fluctuations across the brain regions are interpreted as functional connectivity maps and used for diagnostics of neurological disorders. However, despite the interest narrowed in the ultra-slow fluctuations, hemodynamic activity that exists beyond the ultra-slow frequency range could contribute to the functional connectivity, which remains unclear.Approach. In the present study, we have measured the brain-wide hemodynamics in the human participants with functional near-infrared spectroscopy (fNIRS) in a whole-head, cap-based and high-density montage at a sampling rate of 6.25 Hz. In addition, we have acquired resting state fMRI scans in the same group of participants for cross-modal evaluation of the connectivity maps. Then fNIRS data were deliberately down-sampled to a typical fMRI sampling rate of ∼0.5 Hz and the resulted differential connectivity maps were subject to a k-means clustering.Main results. Our diffuse optical topographical analysis of fNIRS data have revealed a default mode network (DMN) in the spontaneous deoxygenated and oxygenated hemoglobin changes, which remarkably resemble the same fMRI network derived from participants. Moreover, we have shown that the aliased activities in the down-sampled optical signals have altered the connectivity patterns, resulting in a network organization of aliased functional connectivity in the cerebral hemodynamics.Significance.The results have for the first time demonstrated that fNIRS as a broadly accessible modality can image the resting-state functional connectivity in the posterior midline, prefrontal and parietal structures of the DMN in the human brain, in a consistent pattern with fMRI. Further empowered by the fast sampling rate of fNIRS, our findings suggest the presence of aliased connectivity in the current understanding of the human brain organization.

     
    more » « less
  2. Abstract

    Human brains experience whole-brain anatomic and functional changes throughout the lifespan. Age-related whole-brain network changes have been studied with functional magnetic resonance imaging (fMRI) to determine their low-frequency spatial and temporal characteristics. However, little is known about age-related changes in whole-brain fast dynamics at the scale of neuronal events. The present study investigated age-related whole-brain dynamics in resting-state electroencephalography (EEG) signals from 73 healthy participants from 6 to 65 years old via characterizing transient neuronal coactivations at a resolution of tens of milliseconds. These uncovered transient patterns suggest fluctuating brain states at different energy levels of global activations. Our results indicate that with increasing age, shorter lifetimes and more occurrences were observed in the brain states that show the global high activations and more consecutive visits to the global highest-activation brain state. There were also reduced transitional steps during consecutive visits to the global lowest-activation brain state. These age-related effects suggest reduced stability and increased fluctuations when visiting high-energy brain states and with a bias toward staying low-energy brain states. These age-related whole-brain dynamics changes are further supported by changes observed in classic alpha and beta power, suggesting its promising applications in examining the effect of normal healthy brain aging, brain development, and brain disease.

     
    more » « less
  3. Abstract Motivation

    Methods for the global measurement of transcript abundance such as microarrays and RNA-Seq generate datasets in which the number of measured features far exceeds the number of observations. Extracting biologically meaningful and experimentally tractable insights from such data therefore requires high-dimensional prediction. Existing sparse linear approaches to this challenge have been stunningly successful, but some important issues remain. These methods can fail to select the correct features, predict poorly relative to non-sparse alternatives or ignore any unknown grouping structures for the features.

    Results

    We propose a method called SuffPCR that yields improved predictions in high-dimensional tasks including regression and classification, especially in the typical context of omics with correlated features. SuffPCR first estimates sparse principal components and then estimates a linear model on the recovered subspace. Because the estimated subspace is sparse in the features, the resulting predictions will depend on only a small subset of genes. SuffPCR works well on a variety of simulated and experimental transcriptomic data, performing nearly optimally when the model assumptions are satisfied. We also demonstrate near-optimal theoretical guarantees.

    Availability and implementation

    Code and raw data are freely available at https://github.com/dajmcdon/suffpcr. Package documentation may be viewed at https://dajmcdon.github.io/suffpcr.

    Contact

    daniel@stat.ubc.ca

    Supplementary information

    Supplementary data are available at Bioinformatics Advances online.

     
    more » « less